Stock Market Prediction and Efficiency Analysis using Recurrent Neural Network

Download Stock Market Prediction and Efficiency Analysis using Recurrent Neural Network PDF Online Free

Author :
Publisher : GRIN Verlag
ISBN 13 : 3668800456
Total Pages : 76 pages
Book Rating : 4.58/5 ( download)

DOWNLOAD NOW!


Book Synopsis Stock Market Prediction and Efficiency Analysis using Recurrent Neural Network by : Joish Bosco

Download or read book Stock Market Prediction and Efficiency Analysis using Recurrent Neural Network written by Joish Bosco and published by GRIN Verlag. This book was released on 2018-09-18 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Project Report from the year 2018 in the subject Computer Science - Technical Computer Science, , course: Computer Science, language: English, abstract: Modeling and Forecasting of the financial market have been an attractive topic to scholars and researchers from various academic fields. The financial market is an abstract concept where financial commodities such as stocks, bonds, and precious metals transactions happen between buyers and sellers. In the present scenario of the financial market world, especially in the stock market, forecasting the trend or the price of stocks using machine learning techniques and artificial neural networks are the most attractive issue to be investigated. As Giles explained, financial forecasting is an instance of signal processing problem which is difficult because of high noise, small sample size, non-stationary, and non-linearity. The noisy characteristics mean the incomplete information gap between past stock trading price and volume with a future price. The stock market is sensitive with the political and macroeconomic environment. However, these two kinds of information are too complex and unstable to gather. The above information that cannot be included in features are considered as noise. The sample size of financial data is determined by real-world transaction records. On one hand, a larger sample size refers a longer period of transaction records; on the other hand, large sample size increases the uncertainty of financial environment during the 2 sample period. In this project, we use stock data instead of daily data in order to reduce the probability of uncertain noise, and relatively increase the sample size within a certain period of time. By non-stationarity, one means that the distribution of stock data is various during time changing. Non-linearity implies that feature correlation of different individual stocks is various. Efficient Market Hypothesis was developed by Burton G. Malkiel in 1991.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491914211
Total Pages : 532 pages
Book Rating : 4.12/5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Josh Patterson

Download or read book Deep Learning written by Josh Patterson and published by "O'Reilly Media, Inc.". This book was released on 2017-07-28 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop

Applied Soft Computing and Communication Networks

Download Applied Soft Computing and Communication Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813361735
Total Pages : 340 pages
Book Rating : 4.37/5 ( download)

DOWNLOAD NOW!


Book Synopsis Applied Soft Computing and Communication Networks by : Sabu M. Thampi

Download or read book Applied Soft Computing and Communication Networks written by Sabu M. Thampi and published by Springer Nature. This book was released on 2021-07-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes thoroughly refereed post-conference proceedings of the International Applied Soft Computing and Communication Networks (ACN 2020) held in VIT, Chennai, India, during October 14–17, 2020. The research papers presented were carefully reviewed and selected from several initial submissions. The book is directed to the researchers and scientists engaged in various fields of intelligent systems.

Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine Learning

Download Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.40/5 ( download)

DOWNLOAD NOW!


Book Synopsis Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine Learning by : Mohammad Al Ridhawi

Download or read book Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine Learning written by Mohammad Al Ridhawi and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the volatility of the stock market and the multitude of financial variables at play, forecasting the value of stocks can be a challenging task. Nonetheless, such prediction task presents a fascinating problem to solve using machine learning. The stock market can be affected by news events, social media posts, political changes, investor emotions, and the general economy among other factors. Predicting the stock value of a company by simply using financial stock data of its price may be insufficient to give an accurate prediction. Investors often openly express their attitudes towards various stocks on social medial platforms. Hence, combining sentiment analysis from social media and the financial stock value of a company may yield more accurate predictions. This thesis proposes a method to predict the stock market using sentiment analysis and financial stock data. To estimate the sentiment in social media posts, we use an ensemble-based model that leverages Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) models. We use an LSTM model for the financial stock prediction. The models are trained on the AAPL, CSCO, IBM, and MSFT stocks, utilizing a combination of the financial stock data and sentiment extracted from social media posts on Twitter between the years 2015-2019. Our experimental results show that the combination of the financial and sentiment information can improve the stock market prediction performance. The proposed solution has achieved a prediction performance of 74.3%.

Hands-On Machine Learning for Algorithmic Trading

Download Hands-On Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789342716
Total Pages : 668 pages
Book Rating : 4.10/5 ( download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Hands-On Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2018-12-31 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.

Recurrent Neural Networks

Download Recurrent Neural Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000626172
Total Pages : 426 pages
Book Rating : 4.79/5 ( download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks by : Amit Kumar Tyagi

Download or read book Recurrent Neural Networks written by Amit Kumar Tyagi and published by CRC Press. This book was released on 2022-08-08 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text discusses recurrent neural networks for prediction and offers new insights into the learning algorithms, architectures, and stability of recurrent neural networks. It discusses important topics including recurrent and folding networks, long short-term memory (LSTM) networks, gated recurrent unit neural networks, language modeling, neural network model, activation function, feed-forward network, learning algorithm, neural turning machines, and approximation ability. The text discusses diverse applications in areas including air pollutant modeling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing. Case studies are interspersed throughout the book for better understanding. FEATURES Covers computational analysis and understanding of natural languages Discusses applications of recurrent neural network in e-Healthcare Provides case studies in every chapter with respect to real-world scenarios Examines open issues with natural language, health care, multimedia (Audio/Video), transportation, stock market, and logistics The text is primarily written for undergraduate and graduate students, researchers, and industry professionals in the fields of electrical, electronics and communication, and computer engineering/information technology.

Conference Proceedings of ICDLAIR2019

Download Conference Proceedings of ICDLAIR2019 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030671879
Total Pages : 376 pages
Book Rating : 4.77/5 ( download)

DOWNLOAD NOW!


Book Synopsis Conference Proceedings of ICDLAIR2019 by : Meenakshi Tripathi

Download or read book Conference Proceedings of ICDLAIR2019 written by Meenakshi Tripathi and published by Springer Nature. This book was released on 2021-02-08 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings book includes the results from the International Conference on Deep Learning, Artificial Intelligence and Robotics, held in Malaviya National Institute of Technology, Jawahar Lal Nehru Marg, Malaviya Nagar, Jaipur, Rajasthan, 302017. The scope of this conference includes all subareas of AI, with broad coverage of traditional topics like robotics, statistical learning and deep learning techniques. However, the organizing committee expressly encouraged work on the applications of DL and AI in the important fields of computer/electronics/electrical/mechanical/chemical/textile engineering, health care and agriculture, business and social media and other relevant domains. The conference welcomed papers on the following (but not limited to) research topics: · Deep Learning: Applications of deep learning in various engineering streams, neural information processing systems, training schemes, GPU computation and paradigms, human–computer interaction, genetic algorithm, reinforcement learning, natural language processing, social computing, user customization, embedded computation, automotive design and bioinformatics · Artificial Intelligence: Automatic control, natural language processing, data mining and machine learning tools, fuzzy logic, heuristic optimization techniques (membrane-based separation, wastewater treatment, process control, etc.) and soft computing · Robotics: Automation and advanced control-based applications in engineering, neural networks on low powered devices, human–robot interaction and communication, cognitive, developmental and evolutionary robotics, fault diagnosis, virtual reality, space and underwater robotics, simulation and modelling, bio-inspired robotics, cable robots, cognitive robotics, collaborative robotics, collective and social robots and humanoid robots It was a collaborative platform for academic experts, researchers and corporate professionals for interacting their research in various domain of engineering like robotics, data acquisition, human–computer interaction, genetic algorithm, sentiment analysis as well as usage of AI and advanced computation in various industrial challenges based applications such as user customization, augmented reality, voice assistants, reactor design, product formulation/synthesis, embedded system design, membrane-based separation for protecting environment along with wastewater treatment, rheological properties estimation for Newtonian and non-Newtonian fluids used in micro-processing industries and fault detection.

Stock Market Price Prediction using Machine Learning Techniques

Download Stock Market Price Prediction using Machine Learning Techniques PDF Online Free

Author :
Publisher : Ocleno
ISBN 13 :
Total Pages : 172 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Stock Market Price Prediction using Machine Learning Techniques by : Mahfuz Islam Khan Jabed

Download or read book Stock Market Price Prediction using Machine Learning Techniques written by Mahfuz Islam Khan Jabed and published by Ocleno. This book was released on 2024-02-16 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Predicting stock market prices is a challenging task in the financial sector, where the Efficient Market Hypothesis (EMH) posits the impossibility of accurate prediction due to the inherent uncertainty and complexity of stock price behaviour. However, introducing Machine Learning algorithms has shown the feasibility of stock market price forecasting. This study employs advanced Machine Learning models that can predict stock price movements with the right level of accuracy if the correct parameter tuning and appropriate predictor models are developed. In this research work, the LSTM model, which is a type of Recurrent Neural Network (RNN), time series forecasting Facebook Prophet algorithm and Random Forest Regressor model have been implemented on 10 Dhaka Stock Market (DSEbd) listed companies and six international giants for predicting the stock and forecasting the future price. The dataset of domestic companies is extracted from the graphical representation of the DSEbd website, and the international companies' dataset is imported from Yahoo Finance. In this experiment, Facebook Prophet demonstrates a long period of forecasting with reasonable accuracy, capturing daily, weekly, and yearly seasonality, including holiday effects for market trend analysis. Remarkably, the LSTM model exhibits significant accuracy, yielding the best results with evaluation metrics, including RMSE (0.35), MAPE (0.50%), and MAE (0.30). The experimental results underscore the efficiency of LSTM for future stock forecasting, observed over 15 days of upcoming market prices. A comparison of the results shows that the LSTM model efficiently forecasts the next day's closing price.

Advances in Machine Learning and Computational Intelligence

Download Advances in Machine Learning and Computational Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811552436
Total Pages : 853 pages
Book Rating : 4.34/5 ( download)

DOWNLOAD NOW!


Book Synopsis Advances in Machine Learning and Computational Intelligence by : Srikanta Patnaik

Download or read book Advances in Machine Learning and Computational Intelligence written by Srikanta Patnaik and published by Springer Nature. This book was released on 2020-07-25 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.

Neural Networks in Business Forecasting

Download Neural Networks in Business Forecasting PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 9781591402152
Total Pages : 314 pages
Book Rating : 4.58/5 ( download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in Business Forecasting by : G. Peter Zhang

Download or read book Neural Networks in Business Forecasting written by G. Peter Zhang and published by IGI Global. This book was released on 2004-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is one of the most important activities that form the basis for strategic, tactical, and operational decisions in all business organizations. Recently, neural networks have emerged as an important tool for business forecasting. There are considerable interests and applications in forecasting using neural networks. This book provides for researchers and practitioners some recent advances in applying neural networks to business forecasting. A number of case studies demonstrating the innovative or successful applications of neural networks to many areas of business as well as methods to improve neural network forecasting performance are presented.