Real-Time Multi-Chip Neural Network for Cognitive Systems

Download Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000793524
Total Pages : 265 pages
Book Rating : 4.29/5 ( download)

DOWNLOAD NOW!


Book Synopsis Real-Time Multi-Chip Neural Network for Cognitive Systems by : Amir Zjajo

Download or read book Real-Time Multi-Chip Neural Network for Cognitive Systems written by Amir Zjajo and published by CRC Press. This book was released on 2022-09-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.

Neuromorphic Cognitive Systems

Download Neuromorphic Cognitive Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319553100
Total Pages : 172 pages
Book Rating : 4.08/5 ( download)

DOWNLOAD NOW!


Book Synopsis Neuromorphic Cognitive Systems by : Qiang Yu

Download or read book Neuromorphic Cognitive Systems written by Qiang Yu and published by Springer. This book was released on 2017-05-03 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromorphic cognitive systems are urgently needed. The topics covered in this book range from the neuronal level to the system level. In the neuronal level, synaptic adaptation plays an important role in learning patterns. In order to perform higher-level cognitive functions such as recognition and memory, spiking neurons with learning abilities are consistently integrated, building a system with encoding, learning and memory functionalities. The book describes these aspects in detail.

The Relevance of the Time Domain to Neural Network Models

Download The Relevance of the Time Domain to Neural Network Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461407249
Total Pages : 234 pages
Book Rating : 4.49/5 ( download)

DOWNLOAD NOW!


Book Synopsis The Relevance of the Time Domain to Neural Network Models by : A. Ravishankar Rao

Download or read book The Relevance of the Time Domain to Neural Network Models written by A. Ravishankar Rao and published by Springer Science & Business Media. This book was released on 2011-09-18 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs. The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchronizing elements have been shown to be effective in image processing and segmentation tasks, and also in solving the binding problem, which is of great significance in the field of neuroscience. The oscillatory neural models can be employed at multiple scales of abstraction, ranging from individual neurons, to groups of neurons using Wilson-Cowan modeling techniques and eventually to the behavior of entire brain regions as revealed in oscillations observed in EEG recordings. A second interesting direction to consider is to understand the effect of different neural network topologies on their ability to create the desired synchronization. A third direction of interest is the extraction of temporal signaling patterns from brain imaging data such as EEG and fMRI. Hence this Special Session is of emerging interest in the brain sciences, as imaging techniques are able to resolve sufficient temporal detail to provide an insight into how the time domain is deployed in cognitive function. The following broad topics will be covered in the book: Synchronization, phase-locking behavior, image processing, image segmentation, temporal pattern analysis, EEG analysis, fMRI analyis, network topology and synchronizability, cortical interactions involving synchronization, and oscillatory neural networks. This book will benefit readers interested in the topics of computational neuroscience, applying neural network models to understand brain function, extracting temporal information from brain imaging data, and emerging techniques for image segmentation using oscillatory networks

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Download Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662577151
Total Pages : 738 pages
Book Rating : 4.58/5 ( download)

DOWNLOAD NOW!


Book Synopsis Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence by : Nikola K. Kasabov

Download or read book Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence written by Nikola K. Kasabov and published by Springer. This book was released on 2018-08-29 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.

Neuromorphic Intelligence

Download Neuromorphic Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031578732
Total Pages : 256 pages
Book Rating : 4.31/5 ( download)

DOWNLOAD NOW!


Book Synopsis Neuromorphic Intelligence by : Shuangming Yang

Download or read book Neuromorphic Intelligence written by Shuangming Yang and published by Springer Nature. This book was released on with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Space-Time Computing with Temporal Neural Networks

Download Space-Time Computing with Temporal Neural Networks PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627058907
Total Pages : 245 pages
Book Rating : 4.02/5 ( download)

DOWNLOAD NOW!


Book Synopsis Space-Time Computing with Temporal Neural Networks by : James E. Smith

Download or read book Space-Time Computing with Temporal Neural Networks written by James E. Smith and published by Morgan & Claypool Publishers. This book was released on 2017-05-18 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and implementing the brain's computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain's computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain's computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author. As background, relevant biological features are described in terms of their computational and communication properties. The brain's neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely available resource for both communication and computation. Neuron models are first discussed in general, and one is chosen for detailed development. Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are building blocks for constructing larger ensembles, referred to as "columns". These columns are trained in an unsupervised manner and operate collectively to perform the basic cognitive function of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are formed by combining columns into a hierarchical architecture. These higher level architectures are the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation plays a major role in model development, and the simulation infrastructure developed by the author is described.

Neuromorphic Computing Principles and Organization

Download Neuromorphic Computing Principles and Organization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030925250
Total Pages : 260 pages
Book Rating : 4.53/5 ( download)

DOWNLOAD NOW!


Book Synopsis Neuromorphic Computing Principles and Organization by : Abderazek Ben Abdallah

Download or read book Neuromorphic Computing Principles and Organization written by Abderazek Ben Abdallah and published by Springer Nature. This book was released on 2022-05-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on neuromorphic computing principles and organization and how to build fault-tolerant scalable hardware for large and medium scale spiking neural networks with learning capabilities. In addition, the book describes in a comprehensive way the organization and how to design a spike-based neuromorphic system to perform network of spiking neurons communication, computing, and adaptive learning for emerging AI applications. The book begins with an overview of neuromorphic computing systems and explores the fundamental concepts of artificial neural networks. Next, we discuss artificial neurons and how they have evolved in their representation of biological neuronal dynamics. Afterward, we discuss implementing these neural networks in neuron models, storage technologies, inter-neuron communication networks, learning, and various design approaches. Then, comes the fundamental design principle to build an efficient neuromorphic system in hardware. The challenges that need to be solved toward building a spiking neural network architecture with many synapses are discussed. Learning in neuromorphic computing systems and the major emerging memory technologies that promise neuromorphic computing are then given. A particular chapter of this book is dedicated to the circuits and architectures used for communication in neuromorphic systems. In particular, the Network-on-Chip fabric is introduced for receiving and transmitting spikes following the Address Event Representation (AER) protocol and the memory accessing method. In addition, the interconnect design principle is covered to help understand the overall concept of on-chip and off-chip communication. Advanced on-chip interconnect technologies, including si-photonic three-dimensional interconnects and fault-tolerant routing algorithms, are also given. The book also covers the main threats of reliability and discusses several recovery methods for multicore neuromorphic systems. This is important for reliable processing in several embedded neuromorphic applications. A reconfigurable design approach that supports multiple target applications via dynamic reconfigurability, network topology independence, and network expandability is also described in the subsequent chapters. The book ends with a case study about a real hardware-software design of a reliable three-dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs biological brain’s three-dimensional structure. The platform enables high integration density and slight spike delay of spiking networks and features a scalable design. We present methods for fault detection and recovery in a neuromorphic system as well. Neuromorphic Computing Principles and Organization is an excellent resource for researchers, scientists, graduate students, and hardware-software engineers dealing with the ever-increasing demands on fault-tolerance, scalability, and low power consumption. It is also an excellent resource for teaching advanced undergraduate and graduate students about the fundamentals concepts, organization, and actual hardware-software design of reliable neuromorphic systems with learning and fault-tolerance capabilities.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Download Memristors for Neuromorphic Circuits and Artificial Intelligence Applications PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039285769
Total Pages : 244 pages
Book Rating : 4.61/5 ( download)

DOWNLOAD NOW!


Book Synopsis Memristors for Neuromorphic Circuits and Artificial Intelligence Applications by : Jordi Suñé

Download or read book Memristors for Neuromorphic Circuits and Artificial Intelligence Applications written by Jordi Suñé and published by MDPI. This book was released on 2020-04-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

Synaptic Plasticity for Neuromorphic Systems

Download Synaptic Plasticity for Neuromorphic Systems PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889198774
Total Pages : 178 pages
Book Rating : 4.71/5 ( download)

DOWNLOAD NOW!


Book Synopsis Synaptic Plasticity for Neuromorphic Systems by : Christian Mayr

Download or read book Synaptic Plasticity for Neuromorphic Systems written by Christian Mayr and published by Frontiers Media SA. This book was released on 2016-06-26 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.

Neural Networks for Knowledge Representation and Inference

Download Neural Networks for Knowledge Representation and Inference PDF Online Free

Author :
Publisher : Psychology Press
ISBN 13 : 1134771541
Total Pages : 523 pages
Book Rating : 4.47/5 ( download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Knowledge Representation and Inference by : Daniel S. Levine

Download or read book Neural Networks for Knowledge Representation and Inference written by Daniel S. Levine and published by Psychology Press. This book was released on 2013-04-15 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second published collection based on a conference sponsored by the Metroplex Institute for Neural Dynamics -- the first is Motivation, Emotion, and Goal Direction in Neural Networks (LEA, 1992) -- this book addresses the controversy between symbolicist artificial intelligence and neural network theory. A particular issue is how well neural networks -- well established for statistical pattern matching -- can perform the higher cognitive functions that are more often associated with symbolic approaches. This controversy has a long history, but recently erupted with arguments against the abilities of renewed neural network developments. More broadly than other attempts, the diverse contributions presented here not only address the theory and implementation of artificial neural networks for higher cognitive functions, but also critique the history of assumed epistemologies -- both neural networks and AI -- and include several neurobiological studies of human cognition as a real system to guide the further development of artificial ones. Organized into four major sections, this volume: * outlines the history of the AI/neural network controversy, the strengths and weaknesses of both approaches, and shows the various capabilities such as generalization and discreetness as being along a broad but common continuum; * introduces several explicit, theoretical structures demonstrating the functional equivalences of neurocomputing with the staple objects of computer science and AI, such as sets and graphs; * shows variants on these types of networks that are applied in a variety of spheres, including reasoning from a geographic database, legal decision making, story comprehension, and performing arithmetic operations; * discusses knowledge representation process in living organisms, including evidence from experimental psychology, behavioral neurobiology, and electroencephalographic responses to sensory stimuli.