Multiscale Modeling and Simulation of Composite Materials and Structures

Download Multiscale Modeling and Simulation of Composite Materials and Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387363181
Total Pages : 634 pages
Book Rating : 4.89/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling and Simulation of Composite Materials and Structures by : Young Kwon

Download or read book Multiscale Modeling and Simulation of Composite Materials and Structures written by Young Kwon and published by Springer Science & Business Media. This book was released on 2007-12-04 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites

Download Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites PDF Online Free

Author :
Publisher : Woodhead Publishing
ISBN 13 : 0128189851
Total Pages : 766 pages
Book Rating : 4.56/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites by : Wim Van Paepegem

Download or read book Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites written by Wim Van Paepegem and published by Woodhead Publishing. This book was released on 2020-11-25 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Multi-scale Simulation of Composite Materials

Download Multi-scale Simulation of Composite Materials PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 366257957X
Total Pages : 178 pages
Book Rating : 4.72/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multi-scale Simulation of Composite Materials by : Stefan Diebels

Download or read book Multi-scale Simulation of Composite Materials written by Stefan Diebels and published by Springer. This book was released on 2019-02-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their high stiffness and strength and their good processing properties short fibre reinforced thermoplastics are well-established construction materials. Up to now, simulation of engineering parts consisting of short fibre reinforced thermoplastics has often been based on macroscopic phenomenological models, but deformations, damage and failure of composite materials strongly depend on their microstructure. The typical modes of failure of short fibre thermoplastics enriched with glass fibres are matrix failure, rupture of fibres and delamination, and pure macroscopic consideration is not sufficient to predict those effects. The typical predictive phenomenological models are complex and only available for very special failures. A quantitative prediction on how failure will change depending on the content and orientation of the fibres is generally not possible, and the direct involvement of the above effects in a numerical simulation requires multi-scale modelling. One the one hand, this makes it possible to take into account the properties of the matrix material and the fibre material, the microstructure of the composite in terms of fibre content, fibre orientation and shape as well as the properties of the interface between fibres and matrix. On the other hand, the multi-scale approach links these local properties to the global behaviour and forms the basis for the dimensioning and design of engineering components. Furthermore, multi-scale numerical simulations are required to allow efficient solution of the models when investigating three-dimensional problems of dimensioning engineering parts. Bringing together mathematical modelling, materials mechanics, numerical methods and experimental engineering, this book provides a unique overview of multi-scale modelling approaches, multi-scale simulations and experimental investigations of short fibre reinforced thermoplastics. The first chapters focus on two principal subjects: the mathematical and mechanical models governing composite properties and damage description. The subsequent chapters present numerical algorithms based on the Finite Element Method and the Boundary Element Method, both of which make explicit use of the composite’s microstructure. Further, the results of the numerical simulations are shown and compared to experimental results. Lastly, the book investigates deformation and failure of composite materials experimentally, explaining the applied methods and presenting the results for different volume fractions of fibres. This book is a valuable resource for applied mathematics, theoretical and experimental mechanical engineers as well as engineers in industry dealing with modelling and simulation of short fibre reinforced composites.

Multiscale Modeling Approaches for Composites

Download Multiscale Modeling Approaches for Composites PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128233702
Total Pages : 366 pages
Book Rating : 4.02/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling Approaches for Composites by : George Chatzigeorgiou

Download or read book Multiscale Modeling Approaches for Composites written by George Chatzigeorgiou and published by Elsevier. This book was released on 2022-01-07 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green’s tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory. Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more Discusses how to obtain composite properties using different boundary conditions Includes access to a companion site, featuring the numerical examples, Python and ABACUS codes discussed in the book

Multiscale Modeling of Heterogeneous Structures

Download Multiscale Modeling of Heterogeneous Structures PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319654632
Total Pages : 381 pages
Book Rating : 4.38/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling of Heterogeneous Structures by : Jurica Sorić

Download or read book Multiscale Modeling of Heterogeneous Structures written by Jurica Sorić and published by Springer. This book was released on 2017-11-30 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.

Micromechanics of Composite Materials

Download Micromechanics of Composite Materials PDF Online Free

Author :
Publisher : Butterworth-Heinemann
ISBN 13 : 0123970350
Total Pages : 1032 pages
Book Rating : 4.50/5 ( download)

DOWNLOAD NOW!


Book Synopsis Micromechanics of Composite Materials by : Jacob Aboudi

Download or read book Micromechanics of Composite Materials written by Jacob Aboudi and published by Butterworth-Heinemann. This book was released on 2013 with total page 1032 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field. The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use. Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure.

Multi-Scale Modelling of Composite Material Systems

Download Multi-Scale Modelling of Composite Material Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1845690842
Total Pages : 525 pages
Book Rating : 4.47/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multi-Scale Modelling of Composite Material Systems by : C Soutis

Download or read book Multi-Scale Modelling of Composite Material Systems written by C Soutis and published by Elsevier. This book was released on 2005-08-29 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important and exciting areas of composites research is the development of modelling techniques to predict the response of composite materials to different types of stress. Predictive modelling provides the opportunity both to understand better how composites behave in different conditions and to develop materials with enhanced performance for particular industrial applications. Multi-scale modelling of composite material systems summarises the key research in this area and its implications for industry.The book covers modelling approaches ranging from the micron to the metre in scale, and from the single fibre to complete composite structures. Individual chapters discuss a variety of material types from laminates and fibre-reinforced composites to monolithic and sandwich composites. They also analyse a range of types of stress and stress response from fracture and impact to wear and fatigue. Authors also discuss the strengths and weaknesses of particular models.With its distinguished editors and international team of contributors, Multi-scale modelling of composite material systems is a standard reference for both academics and manufacturers in such areas as aerospace, automotive and civil engineering. Extensive coverage of this important and exciting area of composites research Understand how composites behave in different circumstances Compiled by an expert panel of authors and editors

Computational Mechanics of Composite Materials

Download Computational Mechanics of Composite Materials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846280494
Total Pages : 434 pages
Book Rating : 4.98/5 ( download)

DOWNLOAD NOW!


Book Synopsis Computational Mechanics of Composite Materials by : Marcin Marek Kaminski

Download or read book Computational Mechanics of Composite Materials written by Marcin Marek Kaminski and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.

The Cell Method

Download The Cell Method PDF Online Free

Author :
Publisher : Momentum Press
ISBN 13 : 1606506064
Total Pages : 244 pages
Book Rating : 4.66/5 ( download)

DOWNLOAD NOW!


Book Synopsis The Cell Method by : Elena Ferretti

Download or read book The Cell Method written by Elena Ferretti and published by Momentum Press. This book was released on 2014-02-02 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cell Method (CM) is a computational tool that maintains critical multidimensional attributes of physical phenomena in analysis. This information is neglected in the differential formulations of the classical approaches of finite element, boundary element, finite volume, and finite difference analysis, often leading to numerical instabilities and spurious results. This book highlights the central theoretical concepts of the CM that preserve a more accurate and precise representation of the geometric and topological features of variables for practical problem solving. Important applications occur in fields such as electromagnetics, electrodynamics, solid mechanics and fluids. CM addresses non-locality in continuum mechanics, an especially important circumstance in modeling heterogeneous materials. Professional engineers and scientists, as well as graduate students, are offered: • A general overview of physics and its mathematical descriptions; • Guidance on how to build direct, discrete formulations; • Coverage of the governing equations of the CM, including nonlocality; • Explanations of the use of Tonti diagrams; and • References for further reading.

Multiscale Methods

Download Multiscale Methods PDF Online Free

Author :
Publisher : Oxford University Press on Demand
ISBN 13 : 0199233853
Total Pages : 631 pages
Book Rating : 4.54/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multiscale Methods by : Jacob Fish

Download or read book Multiscale Methods written by Jacob Fish and published by Oxford University Press on Demand. This book was released on 2010 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.