Model Predictive Control of Wind Energy Conversion Systems

Download Model Predictive Control of Wind Energy Conversion Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118988582
Total Pages : 516 pages
Book Rating : 4.89/5 ( download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control of Wind Energy Conversion Systems by : Venkata Yaramasu

Download or read book Model Predictive Control of Wind Energy Conversion Systems written by Venkata Yaramasu and published by John Wiley & Sons. This book was released on 2016-12-19 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Model Predictive Control of Wind Energy Conversion Systems

Download Model Predictive Control of Wind Energy Conversion Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119082994
Total Pages : 512 pages
Book Rating : 4.96/5 ( download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control of Wind Energy Conversion Systems by : Venkata Yaramasu

Download or read book Model Predictive Control of Wind Energy Conversion Systems written by Venkata Yaramasu and published by John Wiley & Sons. This book was released on 2016-11-23 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Power Conversion and Control of Wind Energy Systems

Download Power Conversion and Control of Wind Energy Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470593652
Total Pages : 480 pages
Book Rating : 4.53/5 ( download)

DOWNLOAD NOW!


Book Synopsis Power Conversion and Control of Wind Energy Systems by : Bin Wu

Download or read book Power Conversion and Control of Wind Energy Systems written by Bin Wu and published by John Wiley & Sons. This book was released on 2011-08-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.

Modeling and Modern Control of Wind Power

Download Modeling and Modern Control of Wind Power PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119236266
Total Pages : 281 pages
Book Rating : 4.69/5 ( download)

DOWNLOAD NOW!


Book Synopsis Modeling and Modern Control of Wind Power by : Qiuwei Wu

Download or read book Modeling and Modern Control of Wind Power written by Qiuwei Wu and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.

Model Predictive Control for Microgrids

Download Model Predictive Control for Microgrids PDF Online Free

Author :
Publisher : Energy Engineering
ISBN 13 : 9781839533976
Total Pages : 300 pages
Book Rating : 4.78/5 ( download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control for Microgrids by : Jiefeng Hu

Download or read book Model Predictive Control for Microgrids written by Jiefeng Hu and published by Energy Engineering. This book was released on 2021-09 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.

Airborne Wind Energy

Download Airborne Wind Energy PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811019479
Total Pages : 752 pages
Book Rating : 4.70/5 ( download)

DOWNLOAD NOW!


Book Synopsis Airborne Wind Energy by : Roland Schmehl

Download or read book Airborne Wind Energy written by Roland Schmehl and published by Springer. This book was released on 2018-03-31 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.

Model Predictive Control of High Power Converters and Industrial Drives

Download Model Predictive Control of High Power Converters and Industrial Drives PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111901087X
Total Pages : 576 pages
Book Rating : 4.76/5 ( download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control of High Power Converters and Industrial Drives by : Tobias Geyer

Download or read book Model Predictive Control of High Power Converters and Industrial Drives written by Tobias Geyer and published by John Wiley & Sons. This book was released on 2017-02-28 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this original book on model predictive control (MPC) for power electronics, the focus is put on high-power applications with multilevel converters operating at switching frequencies well below 1 kHz, such as medium-voltage drives and modular multi-level converters. Consisting of two main parts, the first offers a detailed review of three-phase power electronics, electrical machines, carrier-based pulse width modulation, optimized pulse patterns, state-of-the art converter control methods and the principle of MPC. The second part is an in-depth treatment of MPC methods that fully exploit the performance potential of high-power converters. These control methods combine the fast control responses of deadbeat control with the optimal steady-state performance of optimized pulse patterns by resolving the antagonism between the two. MPC is expected to evolve into the control method of choice for power electronic systems operating at low pulse numbers with multiple coupled variables and tight operating constraints it. Model Predictive Control of High Power Converters and Industrial Drives will enable to reader to learn how to increase the power capability of the converter, lower the current distortions, reduce the filter size, achieve very fast transient responses and ensure the reliable operation within safe operating area constraints. Targeted at power electronic practitioners working on control-related aspects as well as control engineers, the material is intuitively accessible, and the mathematical formulations are augmented by illustrations, simple examples and a book companion website featuring animations. Readers benefit from a concise and comprehensive treatment of MPC for industrial power electronics, enabling them to understand, implement and advance the field of high-performance MPC schemes.

Model Predictive Control of Microgrids

Download Model Predictive Control of Microgrids PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030245705
Total Pages : 266 pages
Book Rating : 4.02/5 ( download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control of Microgrids by : Carlos Bordons

Download or read book Model Predictive Control of Microgrids written by Carlos Bordons and published by Springer Nature. This book was released on 2019-09-12 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Wind Turbine Control Systems

Download Wind Turbine Control Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846284937
Total Pages : 219 pages
Book Rating : 4.39/5 ( download)

DOWNLOAD NOW!


Book Synopsis Wind Turbine Control Systems by : Fernando D. Bianchi

Download or read book Wind Turbine Control Systems written by Fernando D. Bianchi and published by Springer Science & Business Media. This book was released on 2006-09-07 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the application of Linear Parameter Varying (LPV) gain scheduling techniques to the control of wind energy conversion systems. This reformulation of the classical problem of gain scheduling allows straightforward design procedure and simple controller implementation. From an overview of basic wind energy conversion, to analysis of common control strategies, to design details for LPV gain-scheduled controllers for both fixed- and variable-pitch, this is a thorough and informative monograph.

Blade-Pitch Control for Wind Turbine Load Reductions

Download Blade-Pitch Control for Wind Turbine Load Reductions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319755323
Total Pages : 174 pages
Book Rating : 4.28/5 ( download)

DOWNLOAD NOW!


Book Synopsis Blade-Pitch Control for Wind Turbine Load Reductions by : Wai Hou (Alan) Lio

Download or read book Blade-Pitch Control for Wind Turbine Load Reductions written by Wai Hou (Alan) Lio and published by Springer. This book was released on 2018-03-01 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.