Lower Extremity Exoskeletons for Gait Rehabilitation of Motor-impaired Patients

Download Lower Extremity Exoskeletons for Gait Rehabilitation of Motor-impaired Patients PDF Online Free

Author :
Publisher : ProQuest
ISBN 13 : 9780549387237
Total Pages : pages
Book Rating : 4.34/5 ( download)

DOWNLOAD NOW!


Book Synopsis Lower Extremity Exoskeletons for Gait Rehabilitation of Motor-impaired Patients by : Sai Kumar Banala

Download or read book Lower Extremity Exoskeletons for Gait Rehabilitation of Motor-impaired Patients written by Sai Kumar Banala and published by ProQuest. This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Robotic rehabilitation for physical therapy has several advantages over conventional manual rehabilitation, especially in the aspects of accuracy and repeatability. Initial attempts at robotic rehabilitation focused on training muscles by moving limbs in a fixed repetitive pattern. Later it was realized that such an approach could be suboptimal. Better approach would be the use of 'assist-as-needed' paradigm, where an orthotic device provides just enough assistance to enable the patient to move his leg under his own control. However, at this time, lower extremity devices which can apply appropriate forces to implement this paradigm are still in research and not commercially available. The goal of this work is to develop lower extremity orthotic devices using assist-as-needed paradigm for robotic rehabilitation. To achieve this goal two orthotic devices were developed. They are Gravity Balancing leg Orthosis (GBO) and Active Leg EXoskeleton (ALEX). GBO assists persons with hemiparesis to walk by reducing or eliminating the effects of gravity on the affected limb. The amount of assistance provided can be tuned by the therapist from 0% to 100% gravity balancing. For a quantitative evaluation of the performance of the device several experiments were conducted. These experiments were performed on five healthy subjects and three stroke patients. The results showed that with the GBO set to 100% balancing the EMG activity from the rectus femoris and hamstring muscles was reduced by 75%, during static hip and knee flexion, respectively. For leg-raising tasks the average torque for static positioning reduced by 66.8% at hip joint and 47.3% at knee joint, however if transient portion of the leg raising task is included, the average torque at hip reduced by 61.3% and at knee increased by 2.7% at knee joints. In the walking experiment there was a positive impact on the range of movement at the hip and knee joints, especially for stroke patients, the range of movement increased by more than 57% at hip joint and by more than 73% at the knee joint. These results show that the GBO provides assistance which can be used for rehabilitation. An intensive training of a stroke patient was performed to study the long term effects of GBO, the training lasting for six weeks. The training started out with maximum assistance of 100% gravity balancing and gradually reduced to 0% by the end of training. Patient is also shown visual display of his gait pattern in real time and summary performance after individual sessions. Some of the effects of the training were, increase in patients preferred speed of treadmill walking from 2.72 km/h to 3.04 km/h, patient's preferred overground speed increased from 3.38 km/h to 3.86 km/h by the last evaluation. An improvement of gait pattern was seen where the patients gait pattern became more like a healthy subject's pattern. The patient was able to increase weight bearing on the hemiparetic leg and was more symmetric in his walk. ALEX, on the other hand, is a motorized orthotic device. To achieve the goal of 'assist-as-needed' paradigm for ALEX, Force-Field controller was developed. This controller generates "virtual walls'' in the plane containing human thigh and shank segments. These virtual walls guide and assist the subject's foot along the prescribed trajectory. Linear actuators were used at hip and knee joints of the device. To make the actuators back-drivable, friction compensation was used. Gait training studies with healthy subjects were conducted to measure the effectiveness of ALEX in retraining modified gait pattern. The results show that a healthy human leg muscles can be trained in about 45 to 60 minutes to a modified pattern of foot trajectory. A 15-day long gait training was conducted with a stroke patient using ALEX, the results indicate that using ALEX and force-field controller, the patient's gait pattern improved significantly in many aspects. His gait speed improved both on treadmill from 1.45 km/h to 2.57 km/h and overground from 1.82 km/h to 2.50 km/h. His foot trajectory increased and got about 85% closer to a healthy subject's foot trajectory. Knee flexion increased from 27.2 deg to 47.5 deg and ankle dorsi-flexion increased from 1.9 deg to 5.9 deg by the end of the training. All these results indicate that by using these devices suitably and implementing a long term gait training can help patients with walking disability in a speedy recovery.

Control Strategies for Robotic Exoskeletons to Assist Post-Stroke Hemiparetic Gait

Download Control Strategies for Robotic Exoskeletons to Assist Post-Stroke Hemiparetic Gait PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031576160
Total Pages : 154 pages
Book Rating : 4.64/5 ( download)

DOWNLOAD NOW!


Book Synopsis Control Strategies for Robotic Exoskeletons to Assist Post-Stroke Hemiparetic Gait by : Julio Salvador Lora Millán

Download or read book Control Strategies for Robotic Exoskeletons to Assist Post-Stroke Hemiparetic Gait written by Julio Salvador Lora Millán and published by Springer Nature. This book was released on with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Wearable Robots

Download Wearable Robots PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470987650
Total Pages : 358 pages
Book Rating : 4.50/5 ( download)

DOWNLOAD NOW!


Book Synopsis Wearable Robots by : José L. Pons

Download or read book Wearable Robots written by José L. Pons and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.

Development and Assessment of a Control Approach for a Lower-limb Exoskeleton for Use in Gait Rehabilitation Post Stroke

Download Development and Assessment of a Control Approach for a Lower-limb Exoskeleton for Use in Gait Rehabilitation Post Stroke PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 93 pages
Book Rating : 4.39/5 ( download)

DOWNLOAD NOW!


Book Synopsis Development and Assessment of a Control Approach for a Lower-limb Exoskeleton for Use in Gait Rehabilitation Post Stroke by : Spencer Ambrose Murray

Download or read book Development and Assessment of a Control Approach for a Lower-limb Exoskeleton for Use in Gait Rehabilitation Post Stroke written by Spencer Ambrose Murray and published by . This book was released on 2016 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Development of a Lightweight and High Strength Underactuated Lower Limb Robot Exoskeleton for Gait Rehabilitation

Download Development of a Lightweight and High Strength Underactuated Lower Limb Robot Exoskeleton for Gait Rehabilitation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.71/5 ( download)

DOWNLOAD NOW!


Book Synopsis Development of a Lightweight and High Strength Underactuated Lower Limb Robot Exoskeleton for Gait Rehabilitation by : Fahad Hussain

Download or read book Development of a Lightweight and High Strength Underactuated Lower Limb Robot Exoskeleton for Gait Rehabilitation written by Fahad Hussain and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of robot-assisted physical rehabilitation and robotics technology for providing support to the elderly population is rapidly evolving. Lower limb robot aided rehabilitation and assistive technology have been a focus for the engineering community over the last three decades as several robotic lower limb exoskeletons have been proposed in the literature as well as some being commercially available. One of the most important aspects of developing exoskeletons is the selection of the appropriate material. Strength to weight ratio is the most important factor to be considered before selection of a manufacturing material. The material selection strongly influences the overall weight and performance of the exoskeleton robot. In addition to material selection the type of mechanism and the actuation strongly effect the overall weight of the lower limb robotic exoskeleton. Most of the lower limb exoskeleton provided in the literature use a parallel mechanism, are properly actuated and either use aluminium or steel as their manufacturing materials. All these factors significantly increase the weight of the lower limb robot exoskeleton and make the device heavy, bulky, and uncomfortable for the wearer. Furthermore, an increase in weight contributes to a decrease of energy efficiency, reduces the energy efficiency of the final product, and increase the running cost of the designed robot devices. This thesis explores the wide-ranging potential of lower limb robot exoskeletons in the context of physical rehabilitation. Implementation and testing of a lightweight and high strength material without effecting the reliability was the main research objective of the present work. In this research, a linkage based under-actuated mechanism was used for the development of a lightweight design. Structural and mechanical load analysis of the mechanism was performed by using an advanced approach of finite element analysis. Three materials, namely structural steel, aluminium, and carbon reinforced fibre were compared as the manufacturing materials of the modelled mechanism. After that, a weight estimation was carried out for all three materials and the material which exhibits the best response under mechanical load analysis was selected. From the weight comparison, the carbon reinforced fibre provided the least weight for the digital twin of a lower limb exoskeleton. After material selection, the next step was the topology optimisation to further decrease the mass of the designed prototype without effecting the mechanical performance. The optimisation was carried out by using a multi-mode single objective genetic algorithm (GA) and a reduction of 30 % in the weight of the designed prototype was obtained. The selected material, which is carbon fibre, is a type of polymer material that is highly anisotropic, meaning it shows different material behaviour in different orientations of applied force. The next stage of the research work was the material characterization of the manufacturing material, which was carried out both analytically and experimentally. For defining the optimal criteria for fiber orientation, Hashin's Failure Criteria is considered, and experimental work is performed to determine the most suitable fibre orientation. The material monotonic tensile properties were experimentally determined by experimental work and used to select a suitable orientation to manufacture a physical prototype model of the lower limb robot exoskeleton. After that the manufacturing process was carried out which is divided into three main steps. The first step was the use of the suitable lightweight and high strength material, which was selected by weight comparison in the design stage. The second step was the use of a single actuator to actuate the whole mechanical system and the final step was the use fabrication method to get a strong and reliable structure. Shaping of the different exoskeleton parts was carried out by CNC milling and parts were assembled to build a robotic prototype. A DC motor was used to actuate the complete prototype, which includes hip, knee, and ankle joints. In the end, a reliability analysis was carried out by using a machine learning based approach. A machine learning framework was developed for time-dependent reliability analysis of the developed robot. A neural network algorithm was designed to estimate the time-dependent reliability of the joint displacement and the positions of the end-effector first. From the above methodology, a lightweight and high strength lower limb robot exoskeleton was just not only conceptualized but a significant work was done to get a physical model starting from the material selection and concluding with the fabrication of a physical prototype. The reliability analysis gives an overview of the mechanism safety as a function of joint displacement. The designed prototype of carbon reinforced fibre was four times lighter in weight as compared to steel and three times lighter than aluminium, which is expected to give the wearer a comfortable wearing experience and improves the overall physical rehabilitation experience for the patients.

Wearable Robotics

Download Wearable Robotics PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128146605
Total Pages : 551 pages
Book Rating : 4.06/5 ( download)

DOWNLOAD NOW!


Book Synopsis Wearable Robotics by : Jacob Rosen

Download or read book Wearable Robotics written by Jacob Rosen and published by Academic Press. This book was released on 2019-11-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications

Interfacing Humans and Robots for Gait Assistance and Rehabilitation

Download Interfacing Humans and Robots for Gait Assistance and Rehabilitation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030796302
Total Pages : 384 pages
Book Rating : 4.03/5 ( download)

DOWNLOAD NOW!


Book Synopsis Interfacing Humans and Robots for Gait Assistance and Rehabilitation by : Carlos A. Cifuentes

Download or read book Interfacing Humans and Robots for Gait Assistance and Rehabilitation written by Carlos A. Cifuentes and published by Springer Nature. This book was released on 2021-09-16 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concepts represented in this textbook are explored for the first time in assistive and rehabilitation robotics, which is the combination of physical, cognitive, and social human-robot interaction to empower gait rehabilitation and assist human mobility. The aim is to consolidate the methodologies, modules, and technologies implemented in lower-limb exoskeletons, smart walkers, and social robots when human gait assistance and rehabilitation are the primary targets. This book presents the combination of emergent technologies in healthcare applications and robotics science, such as soft robotics, force control, novel sensing methods, brain-computer interfaces, serious games, automatic learning, and motion planning. From the clinical perspective, case studies are presented for testing and evaluating how those robots interact with humans, analyzing acceptance, perception, biomechanics factors, and physiological mechanisms of recovery during the robotic assistance or therapy. Interfacing Humans and Robots for Gait Assistance and Rehabilitation will enable undergraduate and graduate students of biomedical engineering, rehabilitation engineering, robotics, and health sciences to understand the clinical needs, technology, and science of human-robot interaction behind robotic devices for rehabilitation, and the evidence and implications related to the implementation of those devices in actual therapy and daily life applications.

Locomotor Training

Download Locomotor Training PDF Online Free

Author :
Publisher :
ISBN 13 : 0195342089
Total Pages : 200 pages
Book Rating : 4.86/5 ( download)

DOWNLOAD NOW!


Book Synopsis Locomotor Training by : Susan J. Harkema

Download or read book Locomotor Training written by Susan J. Harkema and published by . This book was released on 2011 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physical rehabilitation for walking recovery after spinal cord injury is undergoing a paradigm shift. Therapy historically has focused on compensation for sensorimotor deficits after SCI using wheelchairs and bracing to achieve mobility. With locomotor training, the aim is to promote recovery via activation of the neuromuscular system below the level of the lesion. What basic scientists have shown us as the potential of the nervous system for plasticity, to learn, even after injury is being translated into a rehabilitation strategy by taking advantage of the intrinsic biology of the central nervous system. While spinal cord injury from basic and clinical perspectives was the gateway for developing locomotor training, its application has been extended to other populations with neurologic dysfunction resulting in loss of walking or walking disability.

Mechatronic Systems in Engineering

Download Mechatronic Systems in Engineering PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535131257
Total Pages : 165 pages
Book Rating : 4.50/5 ( download)

DOWNLOAD NOW!


Book Synopsis Mechatronic Systems in Engineering by : Sahin Yildirim

Download or read book Mechatronic Systems in Engineering written by Sahin Yildirim and published by BoD – Books on Demand. This book was released on 2017-05-03 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book can serve as a reference resource for those very same design and control engineers who help connect their everyday experience in design with the control field of mechatronics. This book also consists of basic and main mechatronic system's laboratory applications for use in research and development departments in academia, government, and industry, and it can be used as a reference source in university libraries. It can also be used as a resource for scholars interested in understanding and explaining the engineering design and control process and for engineering students studying within the traditional structure of most engineering departments and colleges. It is evident that there is an expansion of mechatronics laboratories and classes in the university environment worldwide.

Rehabilitation Robotics

Download Rehabilitation Robotics PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128119969
Total Pages : 382 pages
Book Rating : 4.69/5 ( download)

DOWNLOAD NOW!


Book Synopsis Rehabilitation Robotics by : Roberto Colombo

Download or read book Rehabilitation Robotics written by Roberto Colombo and published by Academic Press. This book was released on 2018-03-08 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics. Provides a comprehensive review of recent developments in the area of rehabilitation robotics Includes information on both therapeutic and assistive robots Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems