Geometry and Convexity

Download Geometry and Convexity PDF Online Free

Author :
Publisher :
ISBN 13 : 9780486469805
Total Pages : 0 pages
Book Rating : 4.08/5 ( download)

DOWNLOAD NOW!


Book Synopsis Geometry and Convexity by : Paul J. Kelly

Download or read book Geometry and Convexity written by Paul J. Kelly and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text assumes no prerequisites, offering an easy-to-read treatment with simple notation and clear, complete proofs. From motivation to definition, its explanations feature concrete examples and theorems. 1979 edition.

Lectures on Convex Geometry

Download Lectures on Convex Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030501809
Total Pages : 287 pages
Book Rating : 4.08/5 ( download)

DOWNLOAD NOW!


Book Synopsis Lectures on Convex Geometry by : Daniel Hug

Download or read book Lectures on Convex Geometry written by Daniel Hug and published by Springer Nature. This book was released on 2020-08-27 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.

Geometry of Convex Sets

Download Geometry of Convex Sets PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119022665
Total Pages : 340 pages
Book Rating : 4.64/5 ( download)

DOWNLOAD NOW!


Book Synopsis Geometry of Convex Sets by : I. E. Leonard

Download or read book Geometry of Convex Sets written by I. E. Leonard and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002.

A Course in Convexity

Download A Course in Convexity PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829688
Total Pages : 378 pages
Book Rating : 4.84/5 ( download)

DOWNLOAD NOW!


Book Synopsis A Course in Convexity by : Alexander Barvinok

Download or read book A Course in Convexity written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2002-11-19 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

Selected Topics in Convex Geometry

Download Selected Topics in Convex Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644512
Total Pages : 223 pages
Book Rating : 4.12/5 ( download)

DOWNLOAD NOW!


Book Synopsis Selected Topics in Convex Geometry by : Maria Moszynska

Download or read book Selected Topics in Convex Geometry written by Maria Moszynska and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines in detail those topics in convex geometry that are concerned with Euclidean space Enriched by numerous examples, illustrations, and exercises, with a good bibliography and index Requires only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory Can be used for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization

Combinatorial Convexity and Algebraic Geometry

Download Combinatorial Convexity and Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240441
Total Pages : 378 pages
Book Rating : 4.40/5 ( download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Convexity and Algebraic Geometry by : Günter Ewald

Download or read book Combinatorial Convexity and Algebraic Geometry written by Günter Ewald and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Convex and Discrete Geometry

Download Convex and Discrete Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540711333
Total Pages : 590 pages
Book Rating : 4.39/5 ( download)

DOWNLOAD NOW!


Book Synopsis Convex and Discrete Geometry by : Peter M. Gruber

Download or read book Convex and Discrete Geometry written by Peter M. Gruber and published by Springer Science & Business Media. This book was released on 2007-05-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.

Geometry of Isotropic Convex Bodies

Download Geometry of Isotropic Convex Bodies PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470414562
Total Pages : 618 pages
Book Rating : 4.66/5 ( download)

DOWNLOAD NOW!


Book Synopsis Geometry of Isotropic Convex Bodies by : Silouanos Brazitikos

Download or read book Geometry of Isotropic Convex Bodies written by Silouanos Brazitikos and published by American Mathematical Soc.. This book was released on 2014-04-24 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.

Foundations of Convex Geometry

Download Foundations of Convex Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521639705
Total Pages : 236 pages
Book Rating : 4.00/5 ( download)

DOWNLOAD NOW!


Book Synopsis Foundations of Convex Geometry by : W. A. Coppel

Download or read book Foundations of Convex Geometry written by W. A. Coppel and published by Cambridge University Press. This book was released on 1998-03-05 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on the foundations of Euclidean geometry aims to present the subject from the point of view of present day mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here real affine space is characterised by a small number of axioms involving points and line segments making the treatment self-contained and thorough, many results being established under weaker hypotheses than usual. The treatment should be totally accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.

Semidefinite Optimization and Convex Algebraic Geometry

Download Semidefinite Optimization and Convex Algebraic Geometry PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972280
Total Pages : 487 pages
Book Rating : 4.83/5 ( download)

DOWNLOAD NOW!


Book Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

Download or read book Semidefinite Optimization and Convex Algebraic Geometry written by Grigoriy Blekherman and published by SIAM. This book was released on 2013-03-21 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.