Computational Nanotechnology Using Finite Difference Time Domain

Download Computational Nanotechnology Using Finite Difference Time Domain PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466583622
Total Pages : 402 pages
Book Rating : 4.27/5 ( download)

DOWNLOAD NOW!


Book Synopsis Computational Nanotechnology Using Finite Difference Time Domain by : Sarhan M. Musa

Download or read book Computational Nanotechnology Using Finite Difference Time Domain written by Sarhan M. Musa and published by CRC Press. This book was released on 2017-12-19 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe. Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts. Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

Advances in FDTD Computational Electrodynamics

Download Advances in FDTD Computational Electrodynamics PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 1608071707
Total Pages : 640 pages
Book Rating : 4.08/5 ( download)

DOWNLOAD NOW!


Book Synopsis Advances in FDTD Computational Electrodynamics by : Allen Taflove

Download or read book Advances in FDTD Computational Electrodynamics written by Allen Taflove and published by Artech House. This book was released on 2013 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.

Multi-Functional Nanomaterials and their Emerging Applications

Download Multi-Functional Nanomaterials and their Emerging Applications PDF Online Free

Author :
Publisher : Trans Tech Publications Ltd
ISBN 13 : 3038264482
Total Pages : 178 pages
Book Rating : 4.84/5 ( download)

DOWNLOAD NOW!


Book Synopsis Multi-Functional Nanomaterials and their Emerging Applications by : Alagarsamy Pandikumar

Download or read book Multi-Functional Nanomaterials and their Emerging Applications written by Alagarsamy Pandikumar and published by Trans Tech Publications Ltd. This book was released on 2014-03-24 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters BCI (WoS). The multi-functional properties of nanomaterials offer a wide range of opportunities for addressing several research and development challenges in the area of nanoscience and nanotechnology. Multi-functional nanomaterials find wide application in a variety of sectors including agriculture, medicine, telecommunications, disaster management and environmental conservation.The focus of this special topic volume is on multifunctional nanomaterial development and their emerging applications towards commercialization. This special topic illustrates a new pathway to achieve novel practical applications using nanomaterials. This special topic can be utilized as a text for researchers as well as graduate students who are interested in nanomaterials based applications. This special topic volume is multidisciplinary by nature. The readers can acquire the necessary knowledge in physics, chemistry and biology related to these multifunctional applications which are associated with the emerging nanomaterials.

Computational Nanotechnology

Download Computational Nanotechnology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351833456
Total Pages : 540 pages
Book Rating : 4.55/5 ( download)

DOWNLOAD NOW!


Book Synopsis Computational Nanotechnology by : Sarhan M. Musa

Download or read book Computational Nanotechnology written by Sarhan M. Musa and published by CRC Press. This book was released on 2018-09-03 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.

Electromagnetic Simulation Using the FDTD Method with Python

Download Electromagnetic Simulation Using the FDTD Method with Python PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119565804
Total Pages : 224 pages
Book Rating : 4.02/5 ( download)

DOWNLOAD NOW!


Book Synopsis Electromagnetic Simulation Using the FDTD Method with Python by : Jennifer E. Houle

Download or read book Electromagnetic Simulation Using the FDTD Method with Python written by Jennifer E. Houle and published by John Wiley & Sons. This book was released on 2020-01-15 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning. Electromagnetic Simulation Using the FDTD Method with Python: Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform Provides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Download Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 1630819271
Total Pages : 350 pages
Book Rating : 4.79/5 ( download)

DOWNLOAD NOW!


Book Synopsis Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® by : Raymond C. Rumpf

Download or read book Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations

Download The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations PDF Online Free

Author :
Publisher : IET
ISBN 13 : 1613531753
Total Pages : 559 pages
Book Rating : 4.54/5 ( download)

DOWNLOAD NOW!


Book Synopsis The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations by : Atef Z. Elsherbeni

Download or read book The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations written by Atef Z. Elsherbeni and published by IET. This book was released on 2015-11-25 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the best books on computational electromagnetics both for graduate students focusing on electromagnetics problems and for practicing engineering professionals in industry and government. It is designed as an advanced textbook and self-study guide to the FDTD method of solving EM problems and simulations. This latest edition has been expanded to include 5 entirely new chapters on advanced topics in the mainstream of FDTD practice. In addition to advanced techniques it also includes applications and examples, and some 'tricks and traps' of using MATLAB to achieve them. Compared to the previous version the second edition is more complete and is a good reference for someone who is performing FDTD research. This book is part of the ACES Series on Computational Electromagnetics and Engineering. Supplementary material can be found at the IET's ebook page Supplementary materials for professors are available upon request via email to [email protected].

Recent Trends in Computational Photonics

Download Recent Trends in Computational Photonics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319554387
Total Pages : 405 pages
Book Rating : 4.89/5 ( download)

DOWNLOAD NOW!


Book Synopsis Recent Trends in Computational Photonics by : Arti Agrawal

Download or read book Recent Trends in Computational Photonics written by Arti Agrawal and published by Springer. This book was released on 2017-11-01 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the recent cutting-edge work on computational methods in photonics and their applications. The latest advances in techniques such as the Discontinuous Galerkin Time Domain method, Finite Element Time Domain method, Finite Difference Time Domain method as well as their applications are presented. Key aspects such as modelling of non-linear effects (Second Harmonic Generation, lasing in fibers, including gain nonlinearity in metamaterials), the acousto-optic effect, and the hydrodynamic model to explain electron response in nanoplasmonic structures are included. The application areas covered include plasmonics, metamaterials, photonic crystals, dielectric waveguides, fiber lasers. The chapters give a representative survey of the corresponding area.

Computational Finite Element Methods in Nanotechnology

Download Computational Finite Element Methods in Nanotechnology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135183259X
Total Pages : 647 pages
Book Rating : 4.95/5 ( download)

DOWNLOAD NOW!


Book Synopsis Computational Finite Element Methods in Nanotechnology by : Sarhan M. Musa

Download or read book Computational Finite Element Methods in Nanotechnology written by Sarhan M. Musa and published by CRC Press. This book was released on 2017-12-19 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.

Selected Papers on Nanotechnology--theory and Modeling

Download Selected Papers on Nanotechnology--theory and Modeling PDF Online Free

Author :
Publisher : SPIE-International Society for Optical Engineering
ISBN 13 :
Total Pages : 560 pages
Book Rating : 4.88/5 ( download)

DOWNLOAD NOW!


Book Synopsis Selected Papers on Nanotechnology--theory and Modeling by : Akhlesh Lakhtakia

Download or read book Selected Papers on Nanotechnology--theory and Modeling written by Akhlesh Lakhtakia and published by SPIE-International Society for Optical Engineering. This book was released on 2006 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a collection of papers focusing on the theory and modeling of nanoscale materials and structures. This book provides an anthology of papers for the understanding of nanotechnological principles. The topics covered include nanotubes, quantum dots, photonic crystals, sculptured thin films, spintronics, nanomagnetics, and nanobiotechnology.