Compressive Imaging: Structure, Sampling, Learning

Download Compressive Imaging: Structure, Sampling, Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108383912
Total Pages : 620 pages
Book Rating : 4.12/5 ( download)

DOWNLOAD NOW!


Book Synopsis Compressive Imaging: Structure, Sampling, Learning by : Ben Adcock

Download or read book Compressive Imaging: Structure, Sampling, Learning written by Ben Adcock and published by Cambridge University Press. This book was released on 2021-09-16 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

High-Dimensional Optimization and Probability

Download High-Dimensional Optimization and Probability PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031008324
Total Pages : 417 pages
Book Rating : 4.20/5 ( download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Optimization and Probability by : Ashkan Nikeghbali

Download or read book High-Dimensional Optimization and Probability written by Ashkan Nikeghbali and published by Springer Nature. This book was released on 2022-08-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Handbook of Mathematical Methods in Imaging

Download Handbook of Mathematical Methods in Imaging PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387929193
Total Pages : 1626 pages
Book Rating : 4.94/5 ( download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer

Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Numerical Analysis meets Machine Learning

Download Numerical Analysis meets Machine Learning PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443239851
Total Pages : 590 pages
Book Rating : 4.54/5 ( download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis meets Machine Learning by :

Download or read book Numerical Analysis meets Machine Learning written by and published by Elsevier. This book was released on 2024-06-13 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Handbook of Numerical Analysis series Updated release includes the latest information on the Numerical Analysis Meets Machine Learning

Sparse Polynomial Approximation of High-Dimensional Functions

Download Sparse Polynomial Approximation of High-Dimensional Functions PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197688X
Total Pages : 310 pages
Book Rating : 4.85/5 ( download)

DOWNLOAD NOW!


Book Synopsis Sparse Polynomial Approximation of High-Dimensional Functions by : Ben Adcock

Download or read book Sparse Polynomial Approximation of High-Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

A Mathematical Introduction to Compressive Sensing

Download A Mathematical Introduction to Compressive Sensing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817649484
Total Pages : 634 pages
Book Rating : 4.87/5 ( download)

DOWNLOAD NOW!


Book Synopsis A Mathematical Introduction to Compressive Sensing by : Simon Foucart

Download or read book A Mathematical Introduction to Compressive Sensing written by Simon Foucart and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Compressed Sensing in Radar Signal Processing

Download Compressed Sensing in Radar Signal Processing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110857694X
Total Pages : 381 pages
Book Rating : 4.49/5 ( download)

DOWNLOAD NOW!


Book Synopsis Compressed Sensing in Radar Signal Processing by : Antonio De Maio

Download or read book Compressed Sensing in Radar Signal Processing written by Antonio De Maio and published by Cambridge University Press. This book was released on 2019-10-17 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.

Magnetic Resonance Image Reconstruction

Download Magnetic Resonance Image Reconstruction PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012822746X
Total Pages : 518 pages
Book Rating : 4.66/5 ( download)

DOWNLOAD NOW!


Book Synopsis Magnetic Resonance Image Reconstruction by : Mehmet Akcakaya

Download or read book Magnetic Resonance Image Reconstruction written by Mehmet Akcakaya and published by Academic Press. This book was released on 2022-11-04 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction

Compressed Sensing

Download Compressed Sensing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107394392
Total Pages : 557 pages
Book Rating : 4.91/5 ( download)

DOWNLOAD NOW!


Book Synopsis Compressed Sensing by : Yonina C. Eldar

Download or read book Compressed Sensing written by Yonina C. Eldar and published by Cambridge University Press. This book was released on 2012-05-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.

An Introduction to Compressed Sensing

Download An Introduction to Compressed Sensing PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197612X
Total Pages : 341 pages
Book Rating : 4.20/5 ( download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Compressed Sensing by : M. Vidyasagar

Download or read book An Introduction to Compressed Sensing written by M. Vidyasagar and published by SIAM. This book was released on 2019-12-03 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.